

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engg.Physics		
Title of the Unit: Oscillation, Ultrasonic's and		
Dielectric Materials	Unit No:- one	

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1.	Which of following material has least value of dielectric constant?A. OilB. PaperC. GlassD. Ceramic	1 mark
2	Class of dielectric material which exhibit a hysteresis loop of polarization versus electric field is termed as A. ferroelectrics B. electric C. ferrites D. dipole	1 mark
3	 Over-damping results in A. slower return to equilibrium B. faster return to equilibrium C. equilibrium is never achieved D. arrhythmic return to equilibrium 	1 mark

	A force that acts to return the mass to it's equilibrium position is called	1 mark
4	 A. frictional force B. restoring force C. normal force D. contact force 	
5	Velocity at equilibrium position is A. constant B. minimum C. maximum D. zero	1 mark
6	If an object moves back and forth repeatedly around a mean position it is called A. oscillating B. revolving C. rotating D. motion 	1 mark
7	Ultrasonic waves are A Longitudinal B Transverse C Longitudinal and transverse both D Electromagnetic waves	1 mark
8	The full form of SONAR application of ultrasonic waves is, A Sound navigation and recalling B Sound navigation and rebounding C Sound navigation and recursion D Sound navigation and ranging	1 mark
9	 When a rod of ferromagnetic material, is kept in a magnetic field parallel to its length, the rod suffers a change in its length. This phenomenon is known as, A ferroelectric effect B Paraelectric effect C Piezoelectric effect D Magnetostriction effect 	1mark

10	The frequency of ultrasonics is A Below 20Hz B Between 20Hz to 20,000 Hz C Above 20,000 Hz D 0	1 mark
	Short Answer Question	
Question No.	Question Description	Expected Marks
1	Definition of ultrasonic wave	2 marks
2	What is SONAR? How it is used?	2 marks
3	State the Properties of Ultrasonic Waves.	2 marks
4	State the applications of Ultrasonic Waves.	2 marks
5	What is Piezoelectric and Magnetostriction Effect?	2 marks
6	Define the Term Dielectric Strength and Dielectric Constant.	2 marks
7	What is dielectric polarization?	2 marks
8	Describe any two uses of dielectric material in detail.	2 marks
9	Define the term Dielectrics.	2 marks
10	Calculate the natural frequency of cast iron of 2.6 cm in length. Density of rod = 7.23 X 103 kg/m3 Young's modulus = 1.16 X 1011 N/m2	2 marks

	Calculate the natural frequency of 40 mm length of a pure iron rod. Given the density of pure iron is 7.25×102 kg/m ² and its Nounc's Modulus is	2 marks
11	115 X 109 N/m2. Can you use it in magnetostriction oscillator to produce	
	ultrasonic waves?	

Long Answer Question		
Question No.	Question Description	Expected Marks
1	Which are the forces involved in Forced Oscillations ? Obtain the differential equation of forced oscillations.	6 marks
2	Discuss the condition of resonance and explain sharpness of resonance.	6 marks
3	Set up differential equation for free oscillation and find general solution .	6 marks
4	Obtain the differential equation of wave motion.	6 marks
5	Explain with neat circuit diagram the generation of ultrasonic waves by magnetostriction oscillator method.	6 marks
6	Explain with neat circuit diagram the generation of ultrasonic waves by piezoelectric oscillator method.	6 marks
7	What are the different types of dielectric materials? Explain them in detail	6 marks
8	Describe the possible mechanism of polarization in a dielectric material.	6 marks
9	Describe any two uses of dielectric material in detail.	6 marks
10	Set up differential equation for damped oscillation and find general solution of it.	6 marks

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject:		
Title of the Unit: Optics, Fibre Optics and Laser	Unit No:-	TWO

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	The emission responsible for producing laser is, A Spontaneous emission B Stimulated emission C ultraviolet emission D non radiative emission	1 mark
2	Ruby laser is a A Gaseous laser B Solid state laser C Semiconductor laser D None of the above	1 mark
3	In He-Ne laser system, the helium and neon gases respectively maintained at a ratio A 1:5 B 1:1 C 1:10 D 10:1	1 mark

4	An optical fiber is based on the principal of A polarization of light B total internal reflection C interference of two beams D diffraction of light	1 mark
5	In step index fiber, the refractive index A Remains constant at core cladding interface B Decreases parabolically along the radius of the core C Increases linearly thorough the core D Changes abruptly at the core cladding interface	1 mark
6	A number which defines the light gathering capacity of an optical fiber is known as A numerical aperture B Acceptance angle C Acceptance cone D None of these	1 mark
7	Constructive interference happens when two waves are A. out of phase B. zero amplitude C. in phase D. in front 	1 mark
8	Extra distance travelled by one of waves compared with other is called A. path B. displacement C. phase difference D. path difference	1 mark
9	The transverse wave nature of light is established by the phenomenon of a) Interference b) Refraction c) Diffraction d) Polarization	1 mark
10	For optical fiber to transmit the signal, the necessary condition is given by A refractive index of core should be less than refractive index of cladding B refractive index of core should be greater than refractive index of	1 mark

	aladding	
	Crafterative index of some should be availed the refrective index of	
	cladding	
	D refractive indices of core and cladding can be arbitrary	
	Short Answer Question	
Question No.	Question Description	2 mark
1	What is Interference? State its types	2 mark
2	Write any two Engineering Applications of laser.	2 mark
3	What is Population Inversion? Why it is necessary for Lasing Action?	2 mark
4	Explain the concept of metastable state in LASER.	2 mark
5	What is laser? Write the characteristics of laser.	2 mark
6	Write any two applications of optical Fiber.	2mark
7	Draw typical diagram for Fiber Optics.	2 mark
8	Define the term Optical Activity and Specific Rotation.	2 mark
9	Explain the term spontaneous and simulated emission	2mark
10	Distinguish between positive and negative crystal.	2 mark

Long Answer Question		
Question No.	Question Description	Expected Marks
1	What is Acceptance angle and Acceptance cone? A fiber cable has an acceptance angle of 30° and core index of refraction is 1.4, calculate the refractive index of cladding.	6 marks
2	Derive an expression for the optical path difference for the reflected rays in a thin film of constant thickness and hence find the conditions for maxima and minima	6 marks

3	What is double refraction? Explain the difference between ordinary ray (O-ray). and extra ordinary ray (e-ray).	6 marks
4	Explain the working, construction and energy level diagram for He-Ne laser.	6 marks
5	Explain Huygen's theory of double refraction .	6 marks
6	Explain the construction and working of a Ruby Laser.	6 marks
7	Write a short note on Laurent's halt shade polarimeter.	6 marks
8	Explain the appearance of Newtons rings by reflected eight .	6 marks
9	State and explain Brewster's law and show that the angle between reflected and refracted ray is 90° . With a slab of flint glass the angle of polarization is found to be $62^{\circ}24'$. Calculate the refractive index of the flint glass.	6 marks

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject:	
Title of the Unit: Electron Optics, Nuclear Physics	
and Quantum Mechanics	Unit No:- Three (3)

Multiple Choice Questions			
Question No.	Question Description	Expected Marks	
1	Hall voltage is directly proportional to A. current	1 mark	

	B. electric field	
	C. magnetic flux density	
	D. all of above	
	For an electron, magnitude of force on it is	1 mark
	A PoV	
•		
2	B. ev	
	D. BV	
	Quantum of electromagnetic energy is called	1 mark
	A. particles	
3	B. photons	
	C. waves	
	D. energy	
	In 1909, Millikan devised technique for measurement of	1 mark
	A. charge on electron	
4	B. charge on cathode	
	C. charge on neutron	
	D. charge on proton	
	By magnetic field cathode rays are deflected in	1 mark
	A. circular path	
5	B. straight path	
	C. curved path	
	D. round path	
	In isotope	1 mark
	B They have different chemical properties	
6	C.They have different atomic number	
	D.They have different mass number	
	In a fination monoton, which martials accurate a Unarity 225 methods to 110	1 mark
7.	A.neutron	
		I

	B.Proton	
	C. alpha-particle	
	D.gamma ray	
	Short Anguar Question	
	Short Answer Question	
Question No.	Question Description	Expected Marks
1	State De-Broglie's hypothesis of Matter wave.	2 mark
2	An electron is accelerated through 1000 volts and is reflected from a crystal The first order reflection occurs when glancing angle is $70^{0. \text{ Calculate interplaner spacing of a crystal.}}$	2mark
3	An electron entering a magnetic field of 10^{-2} wb/m2 with a velocity of 10^{7} m/s describes a circle of radius 6 X 10-3 m, calculate e/m of an electron.	2 mark
4	Explain physical significance of wave function.	2 mark

Long Answer Question		
Question No.	Question Description	Expected Marks
1	With neat diagram explain principle and working of Bainbridge Mass Spectrograph	6 marks
2	Derive the time independent Schrodinger's wave equation.	6 marks
3	Write down the Schrödinger's time independent wave equation	6 marks
4	State Heisenberg's Uncertainty Principle. Prove electron cannot exist in the Nucleus.	6 marks
6	Explain the construction and working of G.M. counter	6 marks
7	Describe Millikan's oil drop method for the determination of electronic charge.	6 marks
8	Using Thomson method calculate ratio of charge on electron to its mass.	6 marks

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject:		
Title of the Unit: Crystal Structure, X-rays and		
Electrodynamics	Unit No:-	Four (4)

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
	In crystal lattice ions are arranged in	1 mark
1	 A. two dimensions B. four dimensions C. three dimensions D. single dimension 	
	D. single dimension	
	Crystal lattice is also known as	1 mark
2	A. lattice triangle B. space lattice	
-	C. lattice line	
	D. lattice array	
	Coordination number in simple cubic crystal structure	1 mark
3	(a) 1 (b) 2	
	(b) 2 (c) 3	
		4 1
	(a) a	1 mark
4	(b) a/2	
	(c) $a/(4/\sqrt{3})$ (d) $a/(4/\sqrt{2})$	
	The number of crystal systems is	1 mark
	A15	
_		
5		
	d]21	
	A cubic crystal system is represented by: ()	1 mark
	$A]a = b = c, \ \alpha = \beta = \gamma \neq 90^{\circ}$	
6	B] $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	
	$C]a = b = c, \ \alpha = \beta = \gamma = 90^{\circ}$	
	D] $a eq b eq c$, $lpha = eta = \gamma = 90^\circ$	
1		

	The number of Bravais lattices is	1 mark
	A]256	
7	B]7	
	C]14	
	D]37	
	If fast moving electrons rapidly decelerate, then rays produced are	1 mark
	A. alpha rays	
8	B. beta rays	
	C. gamma rays	
	D. x-rays	
	X-rays have	1 mark
	A short wavelop oth	
0	A. Short wavelength B. high frequency	
9	C both A and B	
	D. longest wavelength	
	Type of y rays used to detect break in hone is	1 mark
	Type of x-rays used to detect break in bone is	
	A. hard	
	B. soft	
10	C. both A and B	
	D. moderate	
	Short Answer Question	
Question	Question Description	Expected
No.	Question Description	Marks
1	Give any two engineering applications of X-Rays.	2 mark
	Define the term Unit Cell	2mark
2	Denne the term Onit Cen.	2111a1 K

3	State Bragg's law in X-ray diffraction	2 mark
4	State Heisenberg's Uncertainty Principle	2mark
5	Lead exhibits FCC structure. Each side of unit cell is of 4.95 A0 Calculate radius of lead atom.	2 mark
6	An X-ray is operated at 20 kv. Calculate the minimum wavelength of X-rays emitting from it.	2 mark

Long Answer Question

Question No.	Question Description	Expected Marks
	What are the types of X-Rays spectra? How do we get the continuous and	6 marks
1	sharp line spectrum of X- Rays?	
2	Define atomic radius. Calculate atomic radii in SC, BCC and FCC lattices with suitable diagrams.	6 marks
3	Derive the relation between interplaner spacing 'd ' defined by Miller Indices (hkl) and lattice parameter 'a '. Calculate the interplaner spacing for (220) plane where the lattice constant is 4.938 A^{0} .	6 marks
4	Explain Bragg's law. Derive the Bragg's equation for diffraction of X-Rays and discuss its application in X-Ray Crystallography	6 marks
5	Define packing density . Find the packing density in sc ,bcc and fcc lattices.	6 marks
6	Derive the relation between crystal density 'p' and lattice constant 'a' .the density of copper is 8980kg/m ³ and unit cell dimension is 3.61A ⁰ . Atomic weight of copper is 63.54.Determine crystal structure.	6 marks
7	What is displacement current? Write Maxwell's equations in differential and integral form.	6 marks
8	State and derive Moseley's law for characteristics X-ray spectrum.	6 marks

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject:	
Title of the Unit: Magnetic, Superconducting and Semiconducting materials	Unit No:- 5 (Five)

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	Units for magnetic flux density (a) Wb / m2 (b) Wb / A.m (c) A / m (d) Tesla / m	1 mark
2	 .The material which exhibits hysteresis is diamagnetic paramagnetic ferromagnetic ceramic 	1 mark
3	In superconductivity the conductivity of a material becomes Zero Finite Infinite None of the abov	1 mark

4	The superconducting state is perfectly in nature. Diamagnetic Paramagnetic Ferromagnetic Ferromagnetic	1 mark
5	 When temperature increases, intrinsic concentration increases which results in increase of A. conductivity B. conductivity C. capacitivity D. infinite 	1 mark
6	Energy gap is overlapped between Valence band and conduction band in A. insulators B. conductors C. semiconductors D. super semiconductors	1 mark
7	 Which of the following is not a trivalent impurity atom? A. Boron B. Indium C. Gallium D. Phosphorous 	1 mark
8	Semiconductor material doped with penta Valent impurity is called A. n-type B. p-type C. neutral-type D. intrinsic-type	1 mark
9	If metal or semiconductor carrying current is placed in a magnetic field perpendicular to current, an electric field is induced in direction perpendicular to both current and magnetic field. This phenomena is	1 mark

	known as			
	A Chemical Effect			
	B. Toxicity			
	C. Halls Effect			
	D. Plister			
	D. Diistei			
	Strength of magnetic field is known as	1 mark		
	A. flux			
10	B. density			
	C. magnetic strength			
	D. magnetic flux density			
Short Answer Question				
Question No.	Question Description	Expected		
		Marks		
1	Write any two applications of Superconductors.	2 mark		
2	What is the effect of Magnetic field on Superconductors?	2mark		
2				
2	What is migroscopic Obm's Law	2 marile		
3		<i>2</i> шагк		
4	What is Hall Effect.	2 mark		

Long Answer Question				
Question No.	Question Description	Expected Marks		
1	Define magnetic materials. Classify diamagnetic, paramagnetic and ferromagnetic materials in detail giving their differences.	6 marks		
2	Prove Bohr magneton μ = eh/2m.Define and distinguish between hard and soft magnetic materials.	6 marks		
3	On the basis of domain theory explain B-H curve and hence explain retentively and coercively.	6 marks		

4	What is Superconductivity? Explain Meissner Effect in Superconductors.	6 marks
5	Derive an expression for electromagnetic wave in free space and hence calculate the value of velocity of light in free space.	6 marks
6	Explain type – I and type – II superconductor	6 marks
7	Derive an expression for conductivity in an intrinsic and extrinsic semiconductor.Calculate conductivity of pure silicon when concentration of carriers is $1.6 * 10^{10} \text{cm}^3$. $\mu = 1500 \text{cm}^2/\text{v}_s$, $\mu_{h=} 500 \text{ cm}^2/\text{V}_s$.	6 marks